Special 290S/290K Quantum Materials Seminar speaker Josephine Dias (Okinawa Institute of Science and Technology) Tuesday, March 14 at 2:00 pm in 325 Physics South

Time/Venue Tuesday, March 14 at 2:00 pm Pacific Time in 325 Physics South and via Zoom:
https://berkeley.zoom.us/j/99523499113pwd=REovb3pyam03WXQwbEhrU3dqNHZvdz09

Meeting ID: 995 2349 9113 Passcode: 600704
Host Chris Waechtler (Moore Group)
Title Reservoir-assisted energy migration in hybrid quantum systems 
Abstract Recent developments in quantum technology have given us the ability to engineer composite quantum systems including components such as atomic, molecular, solid state and optical. These hybrid quantum systems represent ideal candidates for demonstrating novel and complex phenomena. As an example, it has been shown recently that an ensemble of negatively charged nitrogen-vacancy (NV-) centers in diamond coupled to a resonator exhibits superradiant decay – a collective effect where the radiation is enhanced by the presence of multiple emitters. It is essential we find new applications that benefit from the engineered nature of these hybrid systems. One such example could be in the transfer of energy and quantum correlations. The transport of energy through a network is fundamental to how both nature and current technologies operate. Generally, we think about a series of nodes being connected by channels that transport the energy through them. Motivated by the design of hybrid quantum systems, we will introduce an alternate approach, replacing our channels with engineered collective environments that interact with pairs of nodes. We will show how energy initialized at a specific location in the network can migrate to another network node—even though the environment may be at zero temperature. More importantly, we show that such energy migration occurs on timescales significantly faster than the relaxation rates associated with the single spins which further establishes this as a truly collective phenomenon. Our approach highlights the importance of being able to design and tailor the properties and symmetries of hybrid quantum systems. In doing so, we can illustrate new directions for the future of quantum technologies.

This entry was posted in QM Seminar. Bookmark the permalink.